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Randomization, Statistics, and Causal Inference 
Sander Greenland 

This paper reviews the role of statistics in causal inference. Special attention is given to the need for randomization to justify causal 
inferences from conventional statistics, and the need for random sampling to justify descriptive inferences. In most epidemiologic 
studies, randomization and random sampling play little or no role in the assembly of study cohorts. I therefore conclude that 
probabilistic interpretations of conventional statistics are rarely justified, and that such interpretations may encourage misinter­
pretation of nonrandomized studies. Possible remedies for this problem include deemphasizing inferential statistics in favor of data 
descriptors, and adopting statistical techniques based on more realistic probability models than those in common use. (Epidemi­
ology 1990;1:421-429) 
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In this paper, I wish to review some ideas that, though 
of long history, seem too often overlooked when epide­
miologists use statistical methods. My topic is the role of 
statistics in causal inference, but I am not here con­
cerned with the issue of confidence intervals versus P 
values (an issue which, I think, was successfully resolved 
by Poole (1». Nor am I here concerned with arguments 
favoring likelihood ratios over P values (2). Rather, my 
focus will be the meaning of these inferential statistics in 
randomized studies and their limited relevance when 
neither man nor nature has randomized the study expo­
sure. The limitations, in particular, I feel are often un­
derappreciated. My basic points are these: By continuing 
to define the computed values of inferential statistics in 
a probabilistic manner (as in virtually all texts), we en­
courage misinterpretation of the computed values when 
applied to nonrandomized studies. We also miss the op­
portunity to interpret them in a nonprobabilistic man­
ner, and we overstate their importance for inference. We 
need to elevate the importance of data description and 
summarization relative to statistical inference, or else 
adopt inferential procedures based on more realistic 
probability models than current procedures; most likely, 
both remedies are warranted. 

The arguments given here are largely derived from the 
writings of R.A. Fisher (eg, 3,4), Oscar Kempthorne 
(eg, 5), Jerome Cornfield (eg, 6,7), and David Freed­
man (eg, 8-10). Although these writers disagree (or 
would have disagreed) with each other on many points 
and I have not tried to reproduce faithfully their argu-
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ments or philosophies, each of them has attempted to 
clarify the meaning and limitations of inferential statis­
tics when randomization assumptions fail to hold. Many 
other writers have put forth either parallel or dissenting 
views, but my intention is to review some logic rather 
than the literature (which is vast). I begin with a review 
of heuristic arguments leading to Fisher's exact test for 
two-by-two tables in randomized trials. Although all the 
salient points can be found in many textbooks, I wish to 
cover the arguments in some detail, in order to locate 
where the arguments break down for nonrandomized 
studies. 

Randomized Trials 

RANOOMIZATION AND STATISTICS 

The statistical consequences of randomization may be 
illustrated as follows: Suppose I wish to study whether 
lidocaine prophylaxis prevents death within the 72 
hours following hospital admission for acute myocardial 
infarction. I will enroll two patients for this study, two 
successive admissions to a hospital emergency room. 
When the first patient is admitted, I will toss a fair coin: 
If heads, the first patient will receive lidocaine and the 
second will not; if tails, the second admission will re­
ceive lidocaine and the first will not. 

Suppose now that the first admission is massively 
compromised and is certain to die within 72 hours of 
admission, whereas the second is a mild case and is 
certain to survive, whether or not either of them re­
ceives lidocaine therapy. These conditions mean that 
lidocaine can have no effect on survival within this little 
cohort of two patients. In particular, even if both or 
neither of the patients were treated, we would observe 
exactly one half of the cohort die within 72 hours of 
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admission. Thus the "true" (causal) risk difference for 
lidocaine's effect in this cohort is 1/2 - 1/2 = O. Given 
the preceding scenario, in which lidocaine has no effect, 
there are only two possible results of the randomized 
trial: If the coin is heads, the result will be 

Death 

Yes 
No 

Lidocaine 

Yes 

1 
o 
1 

No 

o 
1 

1 

Total 

1 
1 

2 
Risk-difference estimate = 1 - 0 1. 

If the coin is tails, the result will be 

Death 

Yes 
No 

Lidocaine 

Yes 

o 
1 

No 

1 
o 

Total 

1 
1 

1 1 2 
Risk-difference estimate = 0 - 1 = - 1. 

(I call these "results" rather than "data" because they 
represent the actual experience of the subjects; "data" 
refers to observations that may not correctly represent 
subject experience, owing to losses, measurement error, 
etc.) Because of randomization, the probability of each 
of these results is 1/2. This fact has an interesting con­
sequence for the risk-difference estimate: its mean (ex­
pected value) over the two possible results is 

(Yz)(1) + (Yz)( -1) = 0, 

exactly equal to the true risk difference. Thus we can see 
one statistical benefit of randomization: It makes our 
simple estimate of the true risk difference statistically 
unbiased, in that the statistical expectation (average) of 
the estimate over the possible results equals the true 
value. 

Another benefit of the randomization is that it pro­
vides a known probability distribution for the possible 
results under a specified hypothesis about the treatment 
effect. From this probability distribution, we can calcu­
late the standard error of the risk-difference estimate and 
an exact P value to "test" the specified hypothesis. 
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Thus, in the above example, suppose we wish to test the 
null hypothesis (that the patients would have had the 
same outcome no matter how lidocaine was allocated). 
If we observe the first result, the lower P value is the 
probability of this result under the null hypothesis, 
which is 1/2, plus the probability of all possible results 
showing an association in a more negative direction; 
since there is only one more negative result (the second 
one) and its probability under the null is also 1/2, the 
lower P value is 1/2 + 1/2 = 1. 

I chose the smallest possible controlled trial to illus­
trate these benefits, not only to keep the computations 
simple, but to illustrate one thing randomization does 
not do: It does not prevent the epidemiologic bias known 
as confounding. No matter what the outcome of ran­
domization, the study will be completely confounded, in 
that the two treatment groups (comprising one patient 
each) will be completely noncomparable. In the first 
result, the greater severity of the first patient's condition 
is completely confounded with treatment, so that treat­
ment appears highly causative of death (risk difference 
= 1); in the second result, the lesser severity of the 
second patient's condition is completely confounded 
with treatment, so that treatment appears highly pre­
ventive (risk difference = -1). 

CONFOUNDING AND STATISTICAL BIAS 

The last example illustrates a basic discrepancy between 
the statistical concept of bias and the epidemiologic 
concept of confounding (when the latter is defined in 
terms of noncomparability or nonexchangeability of the 
compared groups (11». Epidemiologic confounding is a 
property of an allocation, and for each allocation in the 
above example there is confounding in the extreme. In 
contrast, statistical bias refers to a nonzero average de­
viation over the probability distribution of results, and 
there is no statistical bias in the example.-

Nevertheless, we can build a link between the two 
concepts if we measure the confounding in each result as 
the difference between the estimate and the true effect. 
For the first result, this measure of confounding is 1 -
o = 1; for the second, it is - 1 - 0 = - 1. The average 
confounding across the results is thus (1/2) (1) + 
(1/2)( -1) = O. This calculation illustrates a more gen­
eral fact: The statistical unbiasedness of randomized tri­
als corresponds to an average confounding of zero over 
the distribution of study results. 

RANOOMIZA TlON AND CONFOUNDING 

The preceding observation should provide little comfort 
for an epidemiologist trying to interpret a single result; 
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after all, what matters is the degree of confounding in 
the observed result. But randomization provides some 
indirect comfort if properly carried out: Using random­
ization, one can make the probability of severe con­
founding as small as one likes by increasing the size of 
the treatment cohorts. Of course, this fact is not an 
ironclad guarantee that confounding will not be severe, 
for our result could be one of the unlucky ones with 
severe confounding. Still, if our cohorts are large and we 
have no evidence of noncomparability, randomization 
should lead us to assign high credibility to the hypothesis 
that the cohorts are approximately comparable, pro­
vided there have been no gross violations of the assign­
ment protocol (7). 

To illusaate these points, suppose now that we enroll 
1,000 consecutive admissions in our lidocaine trial, ran­
domly allocating 500 of them to lidocaine prophylaxis, 
and suppose 100 of them die within 72 hours. Suppose 
further that allocation to lidocaine has no effect on the 
outcome of any of these patients, ie, the 100 that died 
would have died and the other 900 would have survived, 
regardless of allocation. Then, regardless of allocation, the 
study results will appear as follows: 

Death 

Yes 
No 

Lidocaine 

Yes 

A 
500 - A 

500 

No 

100 - A 
400 + A 

500 

Total 

100 
900 

1,000 

Note that under the hypothesized scenario (of no 
lidocaine effect), all the margins of this table are fixed. 

In order to do the standard (frequent ist) analysis of 
the table, we must calculate the proportion of alloca­
tions that lead to the observed table or a table showing 

(
1,000) a more extreme association. There are 500 = 

1,000! 
500!(1,000 _ 500)! ways to allocate 500 of the 1,000 

admissions to treatment. Of these allocations, there 

are e~O) that allocate A of the 100 deaths-to-be to 

treatment and (50~0~ A) that allocate 500 - A of 

the 900 survivors to treatment, so there are (1~0) 
(50~0~ A) allocations in which A deaths-to-be and 
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500 - A survivors receive the treatment. Thus, under 
the null scenario, the proportion of allocations in which 
A deaths-to-be and 500 - A survivors end up in the 
treatment group is 

(
100) ( 900 ) 
A 500 - A 

(
1,000) 
500 

(1) 

So far, we have not invoked the assumption that allo­
cation was random. This assumption implies that all the 
allocations are equally likely; this implication in tum 
implies that Eq 1 is not just a proportion, but is also the 
probability (under the null scenario) that A deaths-to-be 
and 500 - A survivors receive treatment. Using Eq 1, 
we can calculate the probability under the null scenario 
of any possible result of our large trial. In fact, Eq 1 is 
simply the hypergeometric probability that would be 
used in Fisher's exact test. 

Under the null hypothesis, we should expect about 
half of the 100 deaths to occur among the treated pa­
tients. Suppose, however, that we observe 30 deaths 
among the treated patients. Given no treatment effect, 
the probability that random allocation would result in 
30 or fewer of the 100 deaths occurring in the treatment 
group is 

(
100) ( 900 ) 

~ i 500 - i 

"'" ( ) < 0.0001, 
i=O 1,000 

500 

which is just the lower P value for Fisher's exact test. We 
can epidemiologically interpret this P value as the prob­
ability, under the null hypothesis, that randomization 
would yield a result with at least as much downward 
confounding as the observed result. 

As amply discussed in the statistics literature, the util­
ity of the preceding interpretations for epidemiologic 
inference are limited by the fact that they refer to results 
that might have been observed but were not, as well as 
what was observed (one can avoid this problem if one 
uses pure likelihood methods; see, for example, Ref 2). 
Nevertheless, if we randomize, we can find epidemio­
logic interpretations for certain classical inferential sta­
tistics, such as Fisher's P value and Pearson's chi­
squared, as well as for various extensions of these statis­
tics (12). In particular, we can give these statistics 
meaning in terms of classical epidemiologic biases, such 
as confounding. Can we do the same if we do not ran­
domize? There is one special case in which the answer is 
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yes: If nature or circumstance resulted in what is essen­
tially random allocation and we knew this was so, we 
could employ all the above interpretations of our statis­
tics. But such "natural experiments" are rare. If, as 
usual, circumstance has not been so kind as to random­
ize, the answer is less encouraging. 

Nonrandomized Studies 

STATISTICS AND CAUSAL HYPOTHESES 

Suppose as before that we wish to study lidocaine pro­
phylaxis, and we examine two successive myocardial in­
farction admissions, but that our study is nonexperimen­
tal (ie, the attending physician allocates lidocaine treat­
ment as he or she sees fit). If the result is 

Death 

Yes 
No 

Lidocaine 

Yes 

1 

° 
1 

No 

° 1 

1 

Risk-difference estimate = 1, 

Total 

1 
1 

2 

what are the implications of the null scenario (that 
lidocaine had no effect on the outcome of either of these 
patients)? 

One implication is that, if the treatment status of 
these patients had been interchanged, we would have 
observed a complete reversal of the association. In other 
words, under the null scenario, our result is extremely 
sensitive to single interchanges of treatment status. In 
particular, our result is extremely sensitive to the attend­
ing physician's judgment regarding the needs of these 
patients. 

Unfortunately, without randomization, the null sce­
nario would usually not imply anything about the prob­
ability of any particular result. Only additional assump­
tions about physician behavior will allow one to make 
even qualitative statements about probabilities. Sup­
pose, for example, that the attending physician employs 
lidocaine in precisely those cases in which death seems 
likely to ensue without it, and withholds it when sur­
vival seems assured regardless. If the physician is good at 
predicting outcomes, the above result would be much 
more probable than the result in which the survivor­
to-be received lidocaine and the death-to-be did not. In 
the extreme, the above result is inevitable if the physi-
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cian always administers lidocaine to deaths-to-be and 
never does so to survivors-to-be. 

Such examples show that, in most nonrandomized 
studies, inferential statistics do not provide valid prob­
ability statements about treatment effects. P values, 
confidence limits, and likelihood ratios for causal pa­
rameters are calculated using the assumption that all 
interchanges of treatment status are equally probable 
outcomes of the processes determining treatment status 
(at least within strata of controlled factors). This as­
sumption is warranted by proper randomization, but is 
rarely justifiable without it. How, then, are we to inter­
pret statistics from nontandomized studies? 

When no randomization assumption is justified or 
even plausible, Meier has proposed (13) that conven­
tional statistics should be interpreted as a "best-case" 
scenario with respect to apparent precision. Such an 
approach is helpful for cautious interpretation of impre­
cise studies. For example, if a nonrandomized study 
yields 95% relative-risk confidence limits of 0.5 and 5.0, 
we might say that, even if this study had been a ran­
domized trial, there would still be considerable uncer­
tainty about treatment effect. Unfortunately, this ap­
proach is not of much use if the results appear sharp. For 
example, if the 95% limits for the relative risk were 4.0 
and 6.0, this approach would only emphasize how little 
uncertainty would have remained if this study had been 
a randomized trial. 

STATISTICS AND DESCRIPTIVE HYPOTHESES 

Another approach to inferential statistics in nonran­
domized studies is to regard them as "descriptive," in the 
following sense: One imagines that the treated and un­
treated groups represent random samples from two sep­
arate treated and untreated parent populations; the sta­
tistics refer to the difference in outcome frequency in the 
two parent populations but have no connection to any 
causal interpretation of this difference. Fot example, un­
der the descriptive interpretation, the P value refers to 
the null hypothesis that the outcome frequencies in the 
treated and untreated parent populations are the same. 
The P value may be very small and this null hypothesis 
rejected, with no implication that the treatment has an 
effect. This interpretation allows for the possibility that 
the outcome frequencies in the populations may be dif­
ferent because of differences in the processes that gen­
erated the two parent populations. In other words, a 
comparison of the two parent populations might be con­
founded by exactly the same mechanisms that would 
confound comparisons within the study, such as selec­
tive allocation of high-risk patients to treatment. In 
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such circumstances, the statistics only aid us in inferring 
the structure of the parent populations, as in sample 
surveys. 

Insofar as the descriptive interpretation restrains cau­
sal inferences from nonrandomized studies, it is a good 
thing. Nevertheless, the descriptive interpretation is 
rarely justified, for the simple reason that study (sample) 
cohorts are rarely based on random samples from any 
parent population. Consider the Framingham (Massa­
chusetts) study of heart disease. Even if the investigators 
had achieved full participation and follow-up of the se­
lected subjects (which they did not (14»' to what par­
ent population would their statistics refer? Suppose one 
answers that, say, white Framingham males born in 
1900 were a random sample of all white American males 
born in 1900 and alive at study inception (1948), so the 
statistics refer to the latter population. This claim must 
ignore the large ethnic heterogeneity across regions of 
the United States, such as the frequent Anglo-Irish 
background found in Framingham men, compared with 
the frequent Scandinavian backgrounds for Minneapolis 
men or the frequent German and Polish backgrounds 
for Milwaukee men. In light of the large variation in 
heart-disease rates across European nationalities, it 
would seem cavalier to ignore these differences and re­
gard the Framingham cohort as a random sample from 
the general U.S. population. 

One might then attempt to salvage the descriptive 
interpretation by restricting the definition of the parent 
population. One might restrict geographically, say, by 
claiming the statistics for white males born in 1900 refer 
to eastern Massachusetts men. But this claim must ig­
nore the patchwork variation that existed in 1948 
within eastern Massachusetts: Neither the English­
descent "bluebloods" from the North Shore nor the rel­
atively new Greek immigrants within Boston stood 
much chance of representation in the Framingham co­
hort; how could the Framingham cohort be a random 
sample of the population that included those ethnic 
groups? 

Suppose we continued this line of reasoning, restrict­
ing the parent population to reasonably similar commu­
nities, and maintaining geographic continuity of the ar­
eas. We would soon find that any reasonable parent 
population for the Framingham cohort would have quite 
an artificial appearance and might not be very much 
larger than the town of Framingham! The parent pop­
ulation would also have to be quite restricted in time, 
given the profound and incompletely explained secular 
trends in heart disease. 

Consider the very low P value observed in Framing-

Epidemiology November 1990, Volume 1 Number 6 

STATISTICS IN CAUSAL INFERENCE 

ham for the smoking-myocardial infarction association. 
Since smoking was not randomized, this P value could 
not refer to the causal null hypothesis that "smoking is 
not a cause of myocardial infarctions." Descriptively, 
one might claim the P value referred to the null hypoth­
esis that "myocardial infarction rates are constant across 
smoking levels"; but the parent population to which this 
hypothesis refers would at best be some aggregation of 
"Framinghamlike" communities, with areas gerryman­
dered so that the random-sampling assumption would 
not be obviously false. It is not clear that imprecise 
information about this artificial and ill-defined popula­
tion, such as relative-risk confidence intervals for the 
population, should be of more interest than precise in­
formation about the actual study cohort, such as the 
observed relative risks for the cohort. 

If we now consider nonresponse and loss to follow-up 
in Framingham (which amounted to roughly one third 
of those originally invited to participate), the descrip­
tive interpretation of the inferential statistics breaks 
down completely. The subjects did not make their de­
cisions to participate or not on the basis of some ran­
dom-sampling device. Consequently, the Framingham 
cohort experience that was actually observed is not a 
random sample of any parent population experience, 
such as a gerrymandered collection of "Framingham like" 
communities; it is not even a sample of the persons 
initially selected for study. One could attempt to salvage 
the descriptive interpretation by arguing that nonre­
sponse and loss to follow-up were unrelated to smoking 
and heart disease, but this proposition (which is doubt­
ful) is by definition unverifiable. After all, if we could 
observe that nonresponders and dropouts had the same 
joint distribution of smoking and heart disease as the 
retained part of the cohort, the nonresponders and drop­
outs would no longer be lost (15). Thus, in the Framing­
ham study, the descriptive (sample survey) interpreta­
tion of the smoking-he art-disease P value turns out to be 
as groundless as the causal interpretation. 

The point of the preceding exercise is not to criticize 
the Framingham study; on the contrary, it is important 
to note that the study was among the most informative 
in epidemiologic history. The point is that the study was 
informative despite the fact that the study statistics bore 
no randomization interpretation (since no one was ran­
domized), and that any defensible descriptive interpre­
tation would have to be trivial in character. 

STATISTICS AND STOCHASTIC MODELS 

Neither the causal nor the descriptive interpretations of 
inferential statistics holds up in typical nonrandomized 
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studies. But the descriptive interpretation has given 
birth to a third approach, which I would call "stochastic 
modeling." The general idea is this: We regard each 
individual's outcome as a random variable whose distri­
bution depends only on treatment and (possibly) mea­
sured covariates; we then assume that this dependence 
has some simple form. Returning to the lidocaine exam­
ple, we might regard each patient's survival as partly a 
matter of "chance," in exactly the same sense that the 
outcome of the coin toss is a matter of "chance." In 
other words, each patient is assumed to have his or her 
own survival probability, which may fall between zero 
and one. 

Suppose we assume that the survival probabilities 
among treated patients in our study all equal a common 
value 'lTr' and the probabilities among untreated patients 
equal a common value 'ITo. Using these homogeneity 
assumptions, along with some criteria for choosing 
"best" tests, it is possible to deduce the lower Fisher P 
value as a test statistic for the one-sided null hypothesis 
'lTr ~ 'ITo (that treated patients have no better chance of 
survival than untreated patients) (16). More generally, 
one can derive all the usual 2 X 2 table statistics for 
noncausal comparisons of 'lTr and 'ITo, subject to the as­
sumption of homogeneous probabilities within treat­
ment groups. 

A moment's reflection should reveal that the homo­
geneity assumption is absurd. If there is even one prog­
nostic factor (eg, age) that varies within treatment 
groups, the survival probabilities will vary within groups 
and the assumption will fail. One could attempt to get 
around the assumption by stratifying on measured prog­
nostic factors to create homogeneous subgroups; never­
theless, the usual stratified statistics would still depend 
on the homogeneity assumption holding within each 
stratum. Unfortunately, in most if not all settings, this 
stratified homogeneity assumption would be difficult to 

justify, since there are few if any epidemiologic settings 
in which all strong risk factors (such as susceptibility 
genes) are accurately measured and controlled. I would 
conclude that a stochastic-model interpretation cannot 
justify conventional statistics in nonrandomized studies. 

STATISTICS AND DATA DESCRIPTION 

As a final attempt to justify conventional statistics in 
nonrandomized studies, one might consider whether 
they have any nonprobabilistic justification as data de­
scriptions or data summaries. It turns out that such jus­
tification is possible (8,17). In particular, conventional 
statistics may help give us a sense of how much our 
results would be influenced if a small proportion of the 
allocations were changed, at least if the number of sub-
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jects is so large as to preclude subject-by-subject consid­
eration of interchanges. To illustrate this point, suppose 
we enroll 1,000 consecutive admissions into our non­
randomized lidocaine study, and observe 

Death 

Yes 
No 

Lidocaine 

Yes 

30 
470 

500 

No 

70 
430 

500 

Total 

100 
900 

1,000 

This result would hardly be influenced by making a few 
interchanges, and thus would be insensitive to a few 
changes in the decisions of the attending physicians. We 
may additionally note that, under the null scenario (that 
the outcomes of these patients were unaffected by treat­
ment), the same combinatorial arguments as used in the 
randomized-study example may be used to show that 

\

1,000) fewer than 0.0001 of the 500 possible interchanges 

of treatment status would ead to as much or more of an 
assOCiation in the preventive direction. Put another 
way, if the null scenario is correct, fewer than 0.0001 of 
the possible allocations could result in such an extreme 
or more extreme negative association (8). 

Although the nonprobabilistic interpretation of clas­
sical statistics may form a basis for their use in nonran­
domized studies of causation, several cautions apply to 
such use. In the preceding example, the P value told us 
that the allocation was extreme, but still did not tell us 
the probability of getting such an extreme allocation un­
der the null. Unlike the randomized trial (in which all 
allocations are equally _probable), this probability de­
pends on a host of factors such as physician. behavior. If, 
for example, the attending physicians preferentially ap­
ply lidocaine therapy to cases with good prognosis, a 
particular allocation that results in a negative associa­
tion will have a higher probability than a particular al­
location that results in a zero or positive association. 
This scenario implies that the true probability of observ­
ing a result as extreme as or more extreme than above is 
higher, perhaps much higher, than the value obtained 
from the classical calculation. 

Even when classical statistics are considered as only 
data descriptions, it is easy to misinterpret them, espe­
cially if one of the treatment or outcomes groups is 
small. Consider for example, a nonrandomized study of 
lidocaine, with ten consecutive admissions and the fol­
lowing result: 
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Lidocaine 

Yes No 

Death 

Yes 0 5 
No 5 0 

The lower Fisher's exact P value is 11252 = 0.004 for 
this table, meaning that under the null scenario only 
0.4% of allocations (in fact, only this allocation) would 
produce at least as extreme a negative association. Al­
though 0.004 is a very small proportion, it does not 
mean the" results are insensitive to a few changes in 
allocation (18). Interchanging one treated with one un­
treated patient represents a change in treatment status 
for 20% of the subjects. Under the null hypothesis, a 
single interchange will yield 

Death 

Yes 
No 

Yes 

1 
4 

Lidocaine 

No 

4 
1 

Although the assoCiatlon is still strong, the exact P 
value is now 0.10. One more interchange of status could 
almost obliterate the association. Thus, if a single inter­
change involves a large proportion of a treatment or an 
outcome group, a very small (or very large) P value does 
not mean that a finding is insensitive to interchanges. 

Alternatives to Classical Statistics 
I have argued that, in most epidemiologic studies, one 
cannot justify classical statistics by any of the common 
probabilistic arguments. Given this predicament, what 
alternatives to classical statistics are available? One al­
ternative is to limit statistical analysis to data descrip­
tion, at least when no agreed-upon probability model is 
available. Many innovative techniques for data descrip­
tion have appeared under the rubric of "exploratory data 
analysis" (19), especially techniques oriented toward 
creating informative visual summaries such as graphs 
and charts. Such summaries may be descriptive of the 
data only, as in basic tables or graphs of rates. Other 
tabular and graphical summaries, such as scatterplot 
smoothers (20), may be derived under random-sampling 
assumptions but can also be viewed as data descriptions. 

An extension of data description is influence analysis, 
in which one explores the degree to which one's data 
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summaries or effect estimates would change under small 
perturbations of the data (21,22). More generally, the 
most telling aspect of the stability of a result (especially 
in small studies) may be the impact of deleting or inter­
changing a few subjects, as in the last example of the last 
section. Influence analysis may of course be applied to 
randomized studies, but the fact that it can be used even 
when one has no probability model makes it especially 
suitable for nonrandomized studies. 

Rather than discard probabilistic statistics when one 
knows of no random mechanism generating the data, 
one can take the opposite course of employing more 
elaborate probabilistic models. Starting from the basic 
models appropriate for randomized studies, one can add 
model terms for the effects of measured covariates (such 
as regression coefficients), unknown covariates (such as 
random effects), and for known sources of bias (such as 
correction terms for unmeasured confounders, selection 
bias, or measurement error). 

The problems with modeling have been discussed at 
length in the literature, with the fundamental criticism 
being the dependence of modeling results on the cor­
rectness of the assumed model (9,10,23-25). This prob­
lem nevertheless arises in interpretation of any inferen­
tial statistics, including such elementary statistics as 
Mantel-Haenszel tests and confidence limits, as well as 
Fisher's exact test. More elaborate models have the vir­
tue of explicitly accounting for known deviations from 
the ideal randomized study (the ideal under which ele­
mentary statistics are derived). Their drawback is of 
course their reliance on very detailed assumptions about 
processes (such as covariate effects) when there is little 
basis for such assumptions. 

One response to the last problem is to conduct a sen­
sitivityanalysis, in which the analysis models (and hence 
the assumptions) are systematically varied to identify 
those findings (if any) that are relatively unaffected by 
model choice (26,27). Many investigators already em­
ploy an informal sensitivity analysis, insofar as they ap­
ply a variety of analytic techniques to their data to iden­
tify findings that emerge under every technique. (This 
"serial" method of evaluating findings should be con­
trasted to the potentially biased "parallel" approach, in 
which a finding is considered "real" if it emerges from 
just one of many techniques.) With formalized sensitiv­
ity analYSis, one can better ensure exploration of a broad 
range of models. 

Unfortunately, the range of plausible models will of­
ten be far too broad for full exploration. One theoretical 
answer to this problem is to adopt a Bayesian viewpoint: 
We may regard all models as points in a very high­
dimensional parameter space, specify prior distributions 
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over that space, and see what inferences follow for any 
reasonable prior (26,27). I find this viewpoint invalu­
able for criticism of models and model-selection proce­
dures (eg, see Ref 23), but it does not seem to lead to 
easily implemented or generally acceptable methods for 
data analysis. 

Another proposed answer to uncertainty about model 
specification is to employ robust procedures (that is, 
procedures that work better than standard procedures 
when the assumptions underlying standard procedures 
are violated). Several approaches show promise in cer­
tain epidemiologic applications. Random-effect (frailty) 
models have been employed when the usual probability 
models for disease occurrence (such as Poisson or bino­
mial) appear suspect (28-30); empirical Bayes methods 
may be employed to deal with uncertainties about struc­
tural models (31), and have already been used in several 
important epidemiologic problems such as disease map­
ping (32), smoothing of unstable rates (33), and screen­
ing of multiple associations (34,35). Nevertheless, one 
should bear in mind that no procedure is robust to all 
conceivable violations of the underlying probability 
model; in particular, any procedure will be biased by 
uncontrolled sources of confounding, differential selec­
tion, and measurement error. 

CONCLUSION 

Randomization provides the key link between inferen­
tial statistics and causal parameters. Inferential statis­
tics, such as P values, confidence intervals, and likeli­
hood ratios, have very limited meaning in causal analysis 
when the mechanism of exposure assignment is largely 
unknown or is known to be nonrandom. It is my im­
pression that such statistics are often given a weight of 
authority appropriate only in randomized studies. As an 
example of this improper weight, my co-authors and I 
have often presented confidence intervals with a com­
ment that "the data would appear to be compatible with 
a relative risk ranging from [lower limit] to [upper 
limid." Careful consideration of the points raised here 
might have led us to at least preface such a comment 
with the phrase "if the exposure had been randomized 
within levels of the controlled variables, . . . " or else 
omit commenting on the inferential statistics alto­
gether, since the data were probably compatible with a 
broader range of values than indicated by the limits. 
Parallel criticisms apply to the use of statistics for mak­
ing descriptive inferences from samples to populations 
when the selection mechanism is unknown or known to 
be nonrandom, because random sampling provides the 
key link between inferential statistics and population 
parameters. 
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While a good argument can be made for the value of 
statistics in restraining our interpretation of data (36), 
many of us have come to rely on a limited body of 
statistical techniques to quantify the compatibility or 
conflict between data and a hypothesized effect, and the 
relative support of the data for different hypotheses. In 
causal analysis of observational data, valid use of infer­
ential statistics as measures of compatibility, conflict, or 
support depends crucially on randomization assumptions 
about which we are at best agnostic and more usually 
doubtful. Among the possible remedies are: (a) Restrain 
our interpretation of classical statistics by explicating 
and criticizing any randomization assumptions that are 
necessary for probabilistic interpretations; (b) train our 
students and retrain ourselves to focus on nonprobabi­
listic interpretations of inferential statistics; (c) deem­
phasize inferential statistics in favor of pure data descrip­
tors, such as graphs and tables; (d) expand our analytic 
repertoire to include more elaborate techniques that de­
pend on assumptions in the "agnostic" rather than the 
"doubtful" realm, and subject the results of these tech­
niques to influence and sensitivity analysis. These are 
neither mutually exclusive nor exhaustive possibilities, 
but I think anyone of them would constitute an im­
provement over much of what we have done in the past. 
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